POLYPROTIC ACIDS AND BASES_

To be reviewed when studying titrations

Polyprotic Acids and Bases, 10-1 and 10-3

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

recognize the acidity/basicity of some salt solutions: K₂CO₃, NaHCO₃, CaHPO₄, NH₄Cl, etc.

EX 1. How would one treat a solution of sulfuric acid where $K_a = 1.03 \times 10^{-2}$? H₂SO₄(*aq*) + H₂O(*l*) <=> H₃O⁺(*aq*) + HSO₄⁻(*aq*)

 $HSO_4^{-}(aq) + H_2O(l) <=> H_3O^{+}(aq) + SO_4^{2-}(aq)$

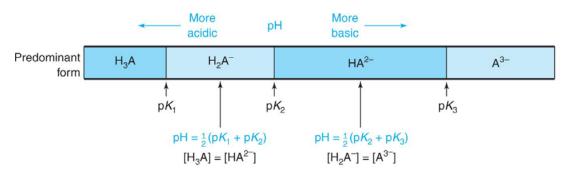
EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?				
$K_{\rm a1} = 7.11 \times 10^{-3}$	$H_3PO_4(aq) + H_2O(l)$	<=>	$H_3O^+(aq) + H_2PO_4^-(aq)$	$pK_{a1} = 2.1481$
W 6.24 40-8	$\mathbf{H} \mathbf{D} \mathbf{O} = (\mathbf{n} \mathbf{r}) + \mathbf{H} \mathbf{O}(\mathbf{h})$		$\mathbf{U} \mathbf{O}^{\dagger}(\mathbf{r},\mathbf{r}) + \mathbf{U} \mathbf{D} \mathbf{O}^{2}(\mathbf{r},\mathbf{r})$	K 5 1050
$K_{a2} = 6.34 \times 10^{-8}$	$H_2PO_4(aq) + H_2O(l)$	<=>	$\mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{HPO}_{4}^{2-}(aq)$	$pK_{a2} = 7.1979$
$K_{a3} = 4.22 \times 10^{-13}$	$HPO_4^{2-}(aq) + H_2O(l)$	<=>	$H_3O^+(aq) + PO_4^{2-}(aq)$	$pK_{a3} = 12.3746$
as				1 45

EX 3. Using the phosphoric acid system in example 2 devise three different buffer systems. Give the pH range over which each buffer would be useful.

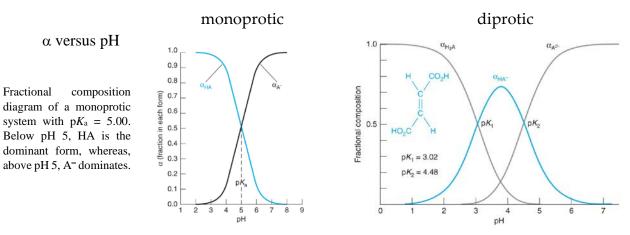
Diprotic Acid

$$H_{3}NCHCO_{2}H \xrightarrow{pK_{a1} = 2.328} H_{3}NCHCO_{2} \xrightarrow{pK_{a2} = 9.744} H_{2}NCHCO_{2}^{-}$$

EX 4. What is the pH of a 0.050 F aqueous solution of NaHSO₃? For sulfurous acid $K_{a1} = 1.39 \times 10^{-2}$, $K_{a2} = 6.73 \times 10^{-8}$


Polyprotic Buffers, 10-3

There is a different Henderson-Hasselbalch equation for conjugate acid/base pair of principal species. Consider the weak tripotic acid H_3A . Solutions buffered around three different pH's can be made from this system (using their salts).


$$pH = pK_{a1} + \log \frac{[H_2A^-]}{[H_3A]} \quad \text{and} \quad pH = pK_{a2} + \log \frac{[H_2A^-]}{[H_2A^-]} \quad \text{and} \quad pH = pK_{a3} + \log \frac{[H_2A^-]}{[HA^{2-}]}$$

Predominant Species, 10-4 - speciation

By comparing the pH with pK_a one can identify the principal species and estimate their concentration (a pH unit of 1 corresponds to a factor of 10 in concentration).

Fractional Composition Diagrams, 10-5

How to Treat Polyprotic Acid-Base Equilibria, 10-3

- 1. treat strongest acid as a monoprotic acid check
- 2. treat strongest base as a monobasic base check
- 3. treat all others as an **intermediate form**
- a) diprotic, H_2A
 - 1) treat a solution of H₂A as monoprotic weak acid, $K_a = K_{a1} = K_1$
 - 2) treat a solution of HA⁻ as intermediate form of diprotic acid, $K_{a1} = K_1$, $K_{a2} = K_2$

LiHSO₄ is not a diprotic acid intermediate form since HSO_4^- is the conjugate base of the strong acid, H_2SO_4 . HSO_4^- only behaves as an acid as it is too weak of a base.

e.g.,LiHSO₃ [H⁺] =
$$\sqrt{\frac{K_1 K_2 [HA] + K_1 K_w}{K_1 + [HA]}} \approx \sqrt{\frac{K_1 K_2 F + K_1 K_w}{K_1 + F}}$$

1) major species is generally [HA⁻] => replace [HA⁻] by F as done above 2) if $K_w \ll K_2 F$ and $K_1 \ll F$ then

$$[H^+] = \sqrt{K_1 K_2}$$
 or $pH \approx \frac{1}{2}(pK_1 + pK_2)$

- 3) treat a solution of A²⁻ as monobasic weak base, $K_b = K_{b1} = K_w/K_{a2}$ e.g., Li₂SO₃
- b) extend to triprotic, H_3A
 - 1) treat a solution of H₃A as monoprotic weak acid, $K_a = K_{a1} = K_1$
 - 2) treat a solution of H₂A⁻ as intermediate form of diprotic acid, $K_{a1} = K_1$, $K_{a2} = K_2$ $e.g., \text{NaH}_2\text{PO}_4$ $[\text{H}^+] \approx \sqrt{\frac{K_1K_2\text{F} + K_1K_w}{K_1 + \text{F}}}$
 - 3) treat a solution of HA²⁻ as intermediate form of diprotic acid, $K_{a2} = K_2$, $K_{a3} = K_3$ *e.g.*, Na₂HPO₄ $\sqrt{K_2K_2F + K_2K_m}$

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_2 K_3 \mathrm{F} + K_2 K_{\mathrm{w}}}{K_2 + \mathrm{F}}}$$

- 4) treat a solution of A^{3-} as monobasic weak base, $K_b = K_{b1} = K_w/K_{a3}$
- 4. salt solutions can be acidic or basic and need to be treated accordingly

-3-